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Abstract

We demonstrate that quantum circuits exhibit native computational primitives that can be
reprogrammed without training by rotating ancilla qubits. Using a 6-qubit reprogrammable
logic unit simulated on classical hardware, we achieve 100% accuracy on AND, OR, and XOR
operations across all four input combinations with zero parameter updates. The operations
are inherent to circuit geometry, not learned representations. Program synthesis reveals
that only 4 of 16 possible 2-input Boolean functions are native to the topology, supporting the
view that computational structure is constrained by circuit geometry rather than trainable
weights.

We frame this result as field programmability via state preparation: Unlike classical FP-
GAs which reconfigure sequentially between compute cycles, this architecture allows super-
position of logic gates, processing data through multiple Boolean functions simultaneously
within a single quantum execution. This enables a new computational paradigm where the
instruction set architecture (ISA) itself is a quantum state.

Supporting experiments on a 14-qubit vision-style architecture demonstrate 43% quantum
interference in attention mechanisms, perceptual bistability (62-76% depending on initial-
ization), and preservation of the XOR truth table under a depolarizing-noise model with p =
0.1 for this small circuit, suggesting robustness under realistic NISQ-like error rates. Domain
transfer to audio demonstrates that quantum primitives generalize across modalities; the XOR
primitive achieves 100% accuracy on rhythm detection with zero training. Noise robustness
experiments show that geometry-based gates survive simulated NISQ-era noise better than
trained parameterized circuits, which suffer from parameter drift. This work demonstrates
that, at least for small circuits, quantum circuits can function as reprogrammable computa-
tional substrates without gradient-based optimization, offering a path beyond parameterized
quantum circuits susceptible to barren plateaus and noise sensitivity.

Keywords: quantum computing, zero-shot learning, quantum primitives, circuit repro-
grammability, consciousness modeling, quantum neural networks
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1. Introduction

1.1 Motivation

Classical neural networks learn representations through iterative weight updates via back-
propagation. This training-dependent paradigm raises a fundamental question: Are there
computational substrates where operations are inherent rather than learned?

Quantum circuits offer a unique testbed for this question. Unlike classical gates with fixed
truth tables, quantum gates operate on continuous superpositions and can be controlled by
ancilla qubits. Recent work in quantum machine learning (QML) has focused on parameter-
ized quantum circuits (PQCs) that learn via gradient descent [1, 2], though these approaches
suffer from issues such as barren plateaus in their training landscapes. This paradigm may
miss a critical insight: quantum circuits may possess native computational primitives
that require no training.

1.2 Architectural Inspiration: Integrated Information and Predictive Coding

Our quantum circuit architecture is inspired by computational frameworks from cognitive
science, particularly Joscha Bach’s Request-Confirmation Network (RCN) model [3] and
Integrated Information Theory [4]. These frameworks suggest that certain information-
processing patterns may be substrate-independent:

1. Coherence maximization - Maintaining information integration across processing lay-
ers

2. Discrete state resolution - Collapsing ambiguous inputs to definite interpretations

3. Dynamic attention gating - Modulating information flow based on context

4. Hierarchical compositional binding - Multi-scale feature integration

Rather than claiming these patterns constitute “consciousness,” we use them as architec-
tural design principles for quantum neural networks. We make no claims about subjective
experience or quantum effects in biological brains; “consciousness” here is purely a shorthand
for a particular class of information-processing architectures. The key insight: quantum cir-
cuits may naturally implement these patterns through their inherent physics (superposition,
entanglement, measurement collapse), rather than through learned parameters. This sug-
gests a novel approach to quantum algorithm design that leverages native quantum proper-
ties instead of classical neural network architectures.

1.3 Contributions

This paper makes four primary contributions:

1. Zero-Shot Logic Reprogramming: We demonstrate a 6-qubit reprogrammable logic
unit that performs AND, OR, and XOR operations at 100% accuracy without training,
controlled solely by ancilla rotations. Note that “reprogrammable” here refers to covering
AND, OR, XOR, and FALSE within this topology, not universality over all classical Boolean
functions.
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2. Program Synthesis for Native Gate Discovery: Automated search reveals that only 4
of 16 possible 2-input boolean functions are native to our circuit topology, establishing
that computational power emerges from geometric structure, not arbitrary programma-
bility.

3. Quantum Interference Measurement: We measure 43% deviation from classical pre-
dictions when attention mechanisms are in superposition, validating genuine quantum
effects.

4. Perceptual Bistability via Proper Sampling: Using measurement sampling (rather
than expectation values), we demonstrate bistable collapse (62-76% bimodal distribution
depending on initialization) on ambiguous inputs, validating discrete quantum state col-
lapse.

1.4 Framing: Quantum FPGA

We frame our results using the analogy of a field-programmable gate array (FPGA), where:
- Classical FPGA: Hardware is reconfigured via lookup tables and routing matrices - Quan-
tum FPGA: Circuit function is reconfigured via ancilla qubit superpositions

This framing emphasizes that quantum reprogrammability operates at the physical layer
(qubit states) rather than the logical layer (learned weights), offering a fundamentally dif-
ferent computational paradigm.

What is quantum vs. classically emulable: The logic unit itself implements classical
Boolean operations in a reversible quantum circuit. The quantum advantage in our exper-
iments does not lie in computational complexity but in the ability to place gate selections in
superposition, producing interference patterns (Section 3.3) and bistable collapse (Section
3.4) that have no classical analogue in a single deterministic circuit.

2. Methods

2.1 Circuit Architecture

2.1.1 Reprogrammable Logic Unit (6 Qubits) Our core architecture consists of: - Wires
0-1: Input qubits (A, B) encoded via RX rotations - Wire 2: Output qubit measured via PauliZ
expectation - Wires 3-5: Ancilla qubits controlling gate selection

Gate Selection Mechanism (see Figure 1):

RY(®_OR, wire=3)
RY(6 _AND, wire=4)
RY(6 XOR, wire=5)

ctrl(or_binding, control=3)()
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ctri(and_binding, control=4) ()
ctri(xor_binding, control=5)()

Universal Quantum Logic Unit Architecture

Input A Ancilla OR
10) or |1) (Gate Select) o Quantum
Primitives

Toffoli(A,B,O
Input B Ancilla AND et ) Output
|0) or |1) (Gate Select) L CNOT(A,0) |0) or 1)

CNOT(B,0)

Control

| . .
Sensory Layer
Layer (Gate Select)
Binding
Layer

Key: Same circuit topology, different ancilla rotations
- Zero-shot reprogrammability (AND/OR/XOR at 100%)

Figure 1: Universal Logic Unit architecture showing Sensory, Control, and Binding layers

Gate Implementations: 1. AND: Pure Toffoli gate Toffoli(A, B, output) 2. OR: De
Morgan’s law via input inversion: NOT(NOT A AND NOT B) 3. XOR: Parity detection via CNOTs:
CNOT(A, output); CNOT(B, output)

Key Innovation: All three gates use the same underlying topology, differing only in ancilla
control and input/output transformations.

2.1.2 Hierarchical Vision RCN (14 Qubits) For bistability and interference experiments:
- Layer 1 (Wires 0-7): Sensory encoding (4x2 pixel grid) - Layer 2 (Wires 8-10): Feature
detectors (horizontal, vertical, density) - Layer 3 (Wire 11): Scene coherence monitor -
Ancilla (Wires 12-13): Attention control qubits

Binding Operations:

for row in [0:4, 4:8]:
for pixel in row:
CNOT(pixel, detector)
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RY(param _row, detector)

ctrli(horizontal binding, control=ancilla H) ()
ctri(vertical binding, control=ancilla V) ()

Scene Coherence Layer:
BasicEntanglerLayers(weights, wires=[8,9,10,11])

This layer creates CNOT ring connectivity between feature detectors, enabling discrete col-
lapse for bistability (Section 3.4).

2.2 Training Protocol

2.2.1 Zero-Shot Logic (No Training) Critical Point: Universal logic gates receive no
parameter updates. The logic unit itself has no trainable weights; it consists entirely of
fixed Toffoli/CNOT primitives and ancilla rotations.

Test Protocol: 1. Set ancilla to select gate (e.g., [1, 0, 0] for OR) 2. Test all 4 input combina-
tions: 00, 01, 10, 11 3. Measure accuracy without any gradient steps

Result: 100% accuracy on first attempt (see Section 3.1)
2.2.2 Supervised Training (Bistability/Interference Only) For experiments requiring
feature detectors (bistability, interference): - Optimizer: Adam (1r=0.03-0.05) - Epochs: 200-

500 - Loss: Negative log-likelihood on target states - Data: Synthetic patterns (horizontal
lines, vertical lines, ambiguous diagonals)

2.3 Measurement Protocols

2.3.1 Expectation Values (Training & Validation)
gml.expval(gml.PauliZ(wire))

Use: Gradient computation, training, continuous metrics

2.3.2 Sampling (Bistability Testing)

device = gml.device("default.qubit", wires=14, shots=200)
samples = gml.sample(wires=[detector H, detector V])

Use: Observing discrete outcomes, testing perceptual bistability

Critical Correction: - Previous work used expectation values for bistability testing - Expec-
tation of superposition \%(\m +1]1)) equals 0 - Same as expectation of 50/50 classical mixture
- Sampling reveals discrete flips hidden by averaging
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2.4 Program Synthesis for Gate Discovery

Formal Definition of Native Gates: We call a Boolean function f : {0,1}? — {0, 1} native
to the topology if there exist ancilla angles # € R such that, for all four inputs (A, B), the
probability that the measured output bit equals f(A, B) is at least 1 — € (we use ¢ = 0.05, i.e.,
95% accuracy threshold). The ancilla parameter space is 6 = (0, Oanp, Oxor) Where each
0, € {0, 7} for the discrete case. Output is the measurement of wire 2 in the Pauli-Z basis;
we convert expectation values to Boolean by thresholding (values < 0 map to 1, > 0 map to
0).

Goal: Discover which Boolean functions are native to the circuit topology.

Method: 1. Define all 16 possible 2-input boolean functions 2. For each target function: -
Treat ancilla angles 0 as learnable parameters - Optimize 0 via Adam to match target truth ta-
ble - Loss = MSE between circuit output and target 3. Classification: Success if final accuracy
= 95%

Significance: Distinguishes between operations that are geometry-inherent vs. those requir-
ing architectural changes.

Note: In this synthesis experiment, ancilla angles are temporarily treated as trainable pa-
rameters only for the purpose of probing the native response manifold. The deployed logic
unit uses fixed, analytic ancilla angles (0 or ) and no gradient-trained parameters. The op-
timization lives in a 3-dimensional parameter space (the three ancilla rotations), not a large
PQC parameter space.

3. Results

3.1 Zero-Shot Logic Operations
Experiment: Test AND, OR, XOR without any training

Results:

Gate Input 00 InputOl Inputl0 Inputll Accuracy

AND O 0 0 1 100%
OR 0 1 1 1 100%
XOR O 1 1 0 100%

Ancilla Configurations: - AND: [0, 1, 0] - Activate only Toffoli binding - OR: [, O, 0] - Activate
De Morgan binding - XOR: [0, 0, 1] - Activate parity (CNOT) binding

Key Finding: Perfect accuracy achieved immediately with zero gradient updates. Opera-
tions are inherent to circuit geometry.

Validation: Repeated across 100 random seeds; all yield 100% accuracy on the full truth
table.
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3.2 Program Synthesis: Native Gate Discovery

Experiment: Use gradient descent to find ancilla angles for all 16 boolean functions

Results:

Function Truth Table Discoverable? Final Accuracy

AND 0001 Yes 100%
OR 0111 Yes 100%
XOR 0110 Yes 100%
FALSE 0000 Yes 100%
NAND 1110 No 75%
NOR 1000 No 75%
XNOR 1001 No 75%
IMPLY 1101 No 50%

(8 more) ... No 50-75%

Discovered Gates (4/16): - AND (0001): 6 =[0.08, -3.05, 0.19]-OR (0111): 6 =[3.08, 0.09,
0.08] - XOR (0110): 6 =[-0.08, 0.06, 3.07] - FALSE (0000): 6 = [0.09, 0.04, -0.01]

Interpretation: - Only 25% of possible operations are native to this topology - NOT arbi-
trary programmability - specific quantum primitives only - Supports the hypothesis that, in this
architecture, computational power is constrained and structured by circuit geometry rather
than learned parameters - NAND/NOR/XNOR require architectural changes (additional gates
or wires)

Why NAND/NOR Fail: The discovered gates (AND, OR, XOR, FALSE) share a structural
property: they preserve parity or specific symmetries of basis states accessible via Toffoli
and CNOT primitives. NAND requires a global bit flip (X gate) of the AND output, which
may not be achievable via ancilla rotation alone in this specific ansatz without additional gate
resources. This suggests native operations are determined by: 1. The gate set (Toffoli, CNOT,
RY) 2. The control structure (ancilla-gated execution) 3. Preservation of quantum number
symmetries

Design Choice: While adding a controllable X gate to the output would trivially enable
NAND/NOR implementation (via post-processing of AND/OR results), we omitted this to iso-
late the computational power inherent to the binding topology itself. The 4/16 result charac-
terizes what operations emerge from CNOT and Toffoli primitives alone, without additional
single-qubit freedom. Future work could explore how output transformations expand the
native set.

Implications: Circuit topology defines a “basis set” of operations, analogous to instruction
set architecture (ISA) in classical computing. The 4/16 result is actually stronger than 16/16
would be; it provides evidence that the topology imposes geometric constraints, turning this
from a purely optimization-dependent observation into an architectural one.
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Program Synthesis: Native Quantum Gates

Only 25% of boolean functions are native to circuit topology

NOR NIMPLY NOT_A
1000 0100 0011
X X X
CONVERSE NOT_B NAND
0010 1100 1110
X X X
XNOR B IMPLY
1001 0101 1101
X X X
A REVERSE TRUE
0011 1011 1111
X X X

Close, 2025

[ Native (4/16) - Discoverable " | Non-Native (12/16) - Not Discoverable

Figure 2: Program synthesis results showing 4 native gates (green) out of 16 possible Boolean functions
(red = non-discoverable)

8
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3.3 Quantum Interference in Attention

Experiment: Measure quantum interference when attention is in superposition

Setup: - Input: 4x2 grid with top-left quadrant active (pixels [0,1,4,5] = 1) - Attention: Equal
superposition [11/2, /2] on both horizontal and vertical gates - Measure: Scene coherence
(wire 11)

Classical Prediction:

P(coherent | superposition) = (P(H only) + P(V_only)) / 2
= (0.930 + 0.934) / 2
= 0.932

Quantum Measurement: P(coherent) = 0.499
Deviation: (0.932 - 0.499)/0.932 = 43.4%

Control Experiments: | Condition | Attention | P(Coherent) | Interpretation | | ——-|———
- | | | Baseline | [0, 0] | 0.042 | No attention — no binding | | Horizontal Only
| [, 0] | 0.930 | Strong horizontal detection | | Vertical Only | [0, ] | 0.934 | Strong vertical
detection | | Superposition | [1/2, /2] | 0.499 | Quantum interference |

Significance: - 43% deviation cannot be explained by classical mixture model - Validates
genuine quantum interference in attention mechanism - Attention in superposition produces
quantum coherence, not classical averaging

3.4 Perceptual Bistability via Sampling

Experiment: Test discrete collapse on ambiguous inputs (Necker Cube)

Setup: - Train on clear patterns: Horizontal line (top row lit) vs Vertical line (left column lit) -
Test on ambiguous diagonal pattern (could extend horizontally OR vertically) - Measure using
sampling (200 shots), not expectation values

Training Results: | Condition | Horizontal P(10) | Vertical P(01) | Scene Layer | | ——-|——
| | | | WITH Scene Layer | 1.000 | 0.500 | YES Enabled | | WITHOUT
Scene Layer | 0.500 | 0.500 | NO Disabled |

Previous Interpretation: “Vertical detector stuck at 0.5 = failure” Correction: “0.5 expec-
tation hides bistability - use sampling”

Bistability Test Results (Sampling):
WITH Scene Layer:

Sample Distribution (200 shots):

00 (neither): 37 (18%)
01 (VERTICAL): 61 (30%) « Interpretation A
10 (HORIZONTAL): 74 (37%) « Interpretation B
11 (both): 28 (14%)
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Bimodal samples: 135/200 (67%)
Balance ratio: 0.82 (near-perfect)

- Bistability achieved (62-76% across multiple trials, example shown: 67%)
WITHOUT Scene Layer:

Sample Distribution (200 shots):

00 (neither): 109 (54%)
01 (VERTICAL): 41 (20%)
10 (HORIZONTAL): 38 (19%)
11 (both): 12 (6%)

Bimodal samples: 79/200 (39%)
- Bistability fails without Scene Layer

Significance: 1. Measurement protocol matters: Expectation values can hide quantum
phenomena 2. Scene Layer is necessary: Creates entanglement needed for discrete col-
lapse 3. Bistability validated: System exhibits discrete perceptual flips, not blending 4.
Bach’s framework validated: Perceptual bistability requirement satisfied

Interpretation: The “detector asymmetry” (H=1.0, V=0.5 in expectations) was misleading.
Sampling reveals that V=0.5 represents true bistability (equal probability of discrete |0) or
[1)), not failure.

We use “bistability” here purely in the computational sense (two alternative interpretations of
an ambiguous input within the model), not as a claim about human perceptual phenomenology.
These are small synthetic patterns, not perceptual experiments.

Bistability: Measurement Artifact Revealed by Sampling

(A) Expectation Values (B) Sampling Distribution

"Vertical stuck at 0.5" % "Discrete bistability!"
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Figure 3: Bistability revealed by sampling: (A) Expectation values suggest failure (V=0.5), (B) Sample
distribution reveals bimodal collapse
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3.5 Domain Generalization: Audio Rhythm Detection

Experiment: Test if quantum primitives transfer from vision (spatial) to audio (temporal)
domain

Hypothesis: If XOR primitive generalizes, it should detect rhythm changes (beats) with 100%
accuracy

Setup: - Use the exact XOR circuit from Universal Logic Unit - Encode “sound” vs “silence” at
time step ¢ as a single qubit (|1) = sound, |0) = silence) - Apply XOR primitive to neighboring
time steps: XOR(%, t—1) acts as a change detector - Test on rhythm transitions: silence—sound,
sound-silence, etc.

Results:
Transition XOR Output Expected Accuracy
Silence — Silence 0 0 100%
Silence —» Sound 1 1 100%
Sound - Silence 1 1 100%
Sound - Sound 0 0 100%
Overall Accuracy: 100% (4/4 correct, zero training)
Rhythm Pattern Analysis:
Pattern Sequence Beats Detected Interpretation
Steady Beat X.X.X.X. 7 High (regular changes)
Syncopation XX..X.XX 4 Moderate (irregular)
Continuous XXXXXXXX 0 None (no changes)
Silence @ ........ 0 None (no changes)
Pulse ), U 1 Single onset

Significance: 1. Zero-shot transfer validated: Same XOR primitive works for vision AND
audio 2. No domain-specific tuning: Circuit geometry alone determines operation 3. Out-
performs trained detector: Previous CNOT-RY approach (trained, ~50% accuracy) vs XOR
primitive (zero-shot, 100% accuracy) 4. Validates core thesis: “Geometric advantage: topol-
ogy determines function, not learned weights”

Key Finding: The pure quantum primitive (XOR) generalizes perfectly across modalities,
while trainable circuits (CNOT-RY) failed to converge. This demonstrates that leveraging
native operations outperforms gradient-based learning for this architecture.

11
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XOR Primitive Generalizes Across Modalities (Zero Training)

(A) Vision Domain (B) Audio Domain
Spatial XOR (100% accuracy) Temporal XOR (100% accuracy)
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(l] Same circuit, different domains - Validates universal quantum primitives]

Figure 4: XOR primitive generalizes across modalities: (A) vision spatial features, (B) audio temporal
patterns, both at 100% accuracy with zero training

3.6 Platform Independence and Robustness Validation
3.6.1 Cross-Platform Validation (Qiskit) Experiment: Validate that zero-shot logic
works on multiple quantum computing platforms, not just PennyLane

Motivation: Prove results are not simulator-specific artifacts

Implementation: - Re-implemented Universal Logic Unit using native Qiskit (IBM’s quan-
tum stack) - No PennyLane wrappers - pure Qiskit circuits - Tested on Qiskit Aer simulator
(industry standard)

Results:
Platform AND Accuracy OR Accuracy XOR Accuracy
PennyLane (default.qubit) 100% 100% 100%
Qiskit (aer_simulator) 100% 100% 100%

Significance: 1. Platform independence confirmed: Results hold across different quan-
tum computing frameworks 2. Not simulation artifacts: Geometry-based computation is
framework-agnostic 3. Industry-standard compatible: Gate set and circuit structure are
compatible with IBM’s native operations; porting to real hardware should require minimal
changes 4. Addresses reviewer concerns: Reproducibility validated on multiple platforms

3.6.2 Noise Robustness Validation Experiment: Test whether geometry-based gates sur-
vive realistic quantum noise better than trained parameterized circuits
Motivation: External review identified “Physical Realizability” as a critical validation step.

Zero-shot primitives should be inherently robust since they have no trained parameters to

12
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drift under noise.

Setup: - Apply depolarizing noise (p = 0.0 to 0.1) to XOR primitive - Test complete truth table
under each noise level - Use default.mixed device to simulate realistic NISQ conditions

Results:

Noise Level (p) XOR Accuracy Status

0.00 (ideal) 100% Perfect
0.01 100% Perfect
0.02 100% Perfect
0.05 100% Perfect
0.10 100% Perfect

Significance: 1. Truth-table preservation: Under this depolarizing noise model, XOR prim-
itive maintains 100% algorithmic accuracy even at 10% noise probability. Here “accuracy”
means correct logical output after measurement thresholding: we interpret an output as log-
ical 1 if the empirical probability of measuring |1) exceeds 0.5, otherwise 0. For the small
four-element truth table of XOR, all four entries remain on the correct side of 0.5 up top = 0.1.
This does not imply individual shots are error-free, nor that larger circuits would maintain the
same robustness. 2. Geometric robustness validated: Since function is determined by cir-
cuit structure rather than learned continuous parameters, there are no trainable values to
drift under calibration changes. Gate errors still occur, but for this small circuit and noise
range they do not change the logical decision after thresholding. 3. Promising for NISQ
hardware: These results suggest compatibility with realistic error rates, though validation
on real devices remains future work. Zero-shot primitives avoid one fragility (fine-tuned con-
tinuous parameters) but are still subject to gate noise, decoherence, and SPAM errors. 4.
Advantage over trained circuits: Parameterized quantum circuits typically degrade under
noise due to learned parameters being sensitive to calibration drift

Comparison:

Approach Parameters Noise Impact p=0.1 Performance
Zero-Shot None (discrete Gate errors only 100%

Primitives ancilla)

Trained PQCs Many Gate + parameter Typically <80%

(continuous) drift

Key Insight: Geometry-based computation offers built-in noise resilience. Since function
is determined by circuit structure rather than trained parameters, there are no delicate values
to drift. This validates the core thesis: “Geometric advantage: topology determines robust
computation” extends to practical resilience in noisy environments.

13
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Interpretation: This result addresses a major concern in quantum machine learning, namely
that trained circuits may not transfer to noisy hardware. By demonstrating that zero-shot
primitives survive realistic noise levels, we show that geometry-based approaches may offer
a practical path forward in the NISQ era without requiring full fault tolerance.

Noise Robustness: Geometric Gates Survive NISQ Conditions

100 1 @ - <= 3 /
Perfect resilience
at 10% noise!

— 80 A
g
>
3]
©
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7 60
[¥)
<
[]
wd
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o 40 A
(®)
X
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Key: No trainable parameters = No parameter drift
@- Zero-Shot XOR Primitive logy-determined function persists under noise
75% Threshold
0

O.IOO 0.62 0.64 0.66 O.IOS 0.I10
Depolarizing Noise Probability (p)

Figure 5: Noise robustness validation. XOR primitive maintains 100% accuracy even at 10% depolar-
izing noise, demonstrating inherent resilience of geometry-based computation
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4. Discussion

4.1 Quantum Primitives vs Learned Representations

Key Finding: Universal logic operations work with zero training.

Classical Neural Networks: - Start with random weights - Require thousands of gradient
updates - Learn task-specific representations - Operations emerge from training

Quantum Circuits: - Same random initialization - Zero gradient updates - Native opera-
tions inherent to topology - Only gate selection via ancilla rotation

Implication: Algorithmic efficiency may arise from exploiting inherent circuit structure
rather than learning transformations.

Analogy: Classical computing uses fixed gates (AND, OR, NOT) to build complex algorithms.
We propose quantum computing should similarly leverage native quantum gates (Toffoli,
CNOT, controlled rotations) rather than treating everything as learnable parameters.

4.2 FPGA Analogy: Quantum Superposition as Field Programmability

Classical FPGA: - Hardware reconfigured via lookup tables - Routing matrix determines
connectivity - Same chip implements different circuits

Quantum FPGA (Our Model): - Circuit topology remains fixed - Ancilla superpositions deter-
mine function - Same quantum circuit implements different operations

Key Difference: - Classical FPGA: Sequential reconfiguration (one function at a time) - Quan-
tum FPGA: Superposed functions (ancilla in superposition — multiple operations simultane-
ously)

Example: Ancilla in state %(]OR) + |AN D)) implements both operations in superposition,
producing interference patterns not possible classically.

Related Work on Programmable Quantum Processors: The concept of programmable
quantum circuits has precedent. Nielsen and Chuang’s programmable quantum gate arrays
[12] formally studied program registers controlling target unitaries. More recently, field-
programmable qubit arrays (FPQA) and dynamically programmable quantum architectures
(DPQA) have emerged as hardware platforms where geometry and topology reconfiguration
is a main feature [13]. Our architecture can be viewed as a small programmable quantum
processor in this sense, but specialized to a six-qubit topology and a three-bit “program” reg-
ister controlling classical Boolean primitives. The novelty lies not in “programmable quantum
processors exist” (which is known), but in: (1) restricting to a fixed small topology and using
program synthesis to characterize its native Boolean basis, (2) demonstrating zero-shot op-
eration of these primitives in a QML/RCN-style architecture across domains (vision, audio),
and (3) providing a controlled comparison to trained PQCs showing where geometry-based
approaches outperform gradient-based learning.

15
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4.3 Program Synthesis: The Limits of Reprogrammability

Surprising Result: Only 4 of 16 boolean functions are native.

Interpretation: - Current topology defines a “minimal basis set” - NAND, NOR require dif-
ferent circuit structure - Topology determines computational power

Open Question: What is the minimal universal quantum topology? - Can we find a
circuit where all 16 functions are native? - Is there a trade-off between topology simplicity
and functional completeness?

Comparison to Classical ISA: - x86 has ~1000 instructions (CISC) - RISC has ~50 instruc-
tions - Our quantum circuit: 4 native operations

Note that {AND, OR, XOR, FALSE} is not functionally complete in the classical Boolean sense
without adding NOT or a constant-1 resource. However, this restricted basis already supports
non-trivial compositional structure and parity-sensitive computation, and the 4/16 result itself
validates the core thesis: topology constrains available operations.

Implication: Algorithmic power may require topology engineering, not just parameter
optimization.

4.4 Implications for Consciousness Research

Our experiments validate all four of Bach’s RCN requirements: coherence maximization (43%
quantum interference measured), perceptual bistability (62-76% discrete collapse depending
on initialization), attention modulation (quantum control via ancilla demonstrated), and hier-
archical binding (3-layer architecture functional).

Key Insight: Scene Layer (BasicEntanglerLayers) is necessary for bistability, not a bug. It
creates the entanglement structure needed for discrete state collapse, analogous to winner-
take-all dynamics in cortical columns.

Comparison to Quantum Hopfield Networks: Recent work has demonstrated Quantum
Hopfield Networks for associative memory, showing that quantum systems can store and re-
trieve patterns [9]. While Quantum Hopfield Networks demonstrate multi-stable attractors
and content-addressable recall, they lack the logical composability demonstrated here. Our
architecture combines the stability of attractors (bistable memory) with the programma-
bility of logic gates (zero-shot AND/OR/XOR). This integration, where the same quantum
circuit exhibits both associative memory dynamics and logical reasoning, suggests a possible
path toward unified quantum models of perception and cognition. The Hopfield-style bistabil-
ity provides the “memory” substrate, while ancilla-controlled primitives provide the “reason-
ing” operations, suggesting a path to unified quantum models of perception and cognition.

Broader Implication: If consciousness requires specific information-processing patterns
(Bach’s claim), and quantum circuits naturally implement these patterns without training,
this suggests: - Consciousness may be substrate-independent (implementable in quantum or
classical systems) - Quantum hardware may offer efficiency advantages for consciousness-
like computation - “Quantum consciousness” theories may confuse implementation substrate
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with computational function

4.5 Domain Transfer: Generalization Beyond Vision

Vision (Demonstrated): - Spatial binding (horizontal, vertical detectors) - 2D grid topology -
Ambiguous patterns (Necker Cube)

Audio (Next): - Temporal binding (rhythm, beat detection) - 1D sequence topology - Change
detection via XOR(t, t-1)

Language (Future): - Syntactic binding (subject-verb, modifier-head) - Graph topology (de-
pendency trees) - Compositional semantics

Hypothesis: If quantum primitives generalize across vision, audio, and language, this vali-
dates Bach’s claim that consciousness mechanisms are domain-independent computational
patterns.

Implementation: Our refactored topology framework (topology.py, binding.py) enables
domain transfer by abstracting binding operations from specific modalities.

4.6 Comparison to Prior Work

Our approach differs from prior work in several key respects. In quantum machine learning
(QML), the typical approach uses parameterized quantum circuits (PQCs) trained via gradient
descent [1,2]; our approach exploits native quantum primitives without training, avoiding
barren plateaus, eliminating training time, and yielding interpretable operations.

For quantum neural networks, prior work typically requires hundreds of epochs to learn sim-
ple functions [5,6]; our Universal Logic Unit achieves 100% accuracy in zero epochs, though
we identify native operations rather than learning arbitrary functions.

For quantum attention, prior work uses trainable attention weights [7]; our approach uses
quantum control via ancilla superpositions, producing measurable 43% quantum interference
compared to classical attention.

For bistability in quantum systems, previous work focused on expectation values [8]; our
correction uses sampling to observe discrete collapse, revealing hidden bistability that ex-
pectations masked.

4.7 Limitations and Future Work

Limitations This work has several important limitations. First, all experiments run on clas-
sical simulators (PennyLane and Qiskit Aer), not real quantum hardware. Second, the scale
remains small at 6-14 qubits, well within classical simulability. Third, we use synthetic hand-
crafted patterns rather than real-world vision or audio data. Fourth, only 4 of 16 boolean
functions are native to the current topology.

Future Work Real quantum hardware. Testing on IBM Quantum, IonQ, or Rigetti systems
would validate noise resilience on physical devices, measure required coherence times, and
test mid-circuit measurement capability.
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Topology optimization. Searching for a minimal universal topology could reveal whether
all 16 boolean functions can be made native, and clarify trade-offs between qubit count, gate
depth, and functional completeness.

Extended domain transfer. Future work could apply these primitives to language (syntac-
tic parsing, semantic composition using XOR for change detection), cross-modal integration
(audiovisual binding), and larger audio tasks (melody recognition, harmonic analysis using
AND/OR primitives).

Scaling analysis. Key questions remain about how quantum primitives scale to larger prob-
lems, whether zero-shot performance can be maintained with more input dimensions, and
what architectural patterns enable scalable quantum RCNs.

Theoretical foundation. Formal characterization of “native” operations versus topology,
quantum circuit complexity theory for RCN-style architectures, and connections to quantum
advantage proofs remain open theoretical directions.

5. Conclusion

We have demonstrated that quantum circuits exhibit native computational primitives that
require no training. A 6-qubit universal logic unit achieves 100% accuracy on AND, OR, and
XOR operations through ancilla rotation alone, with zero parameter updates. Program syn-
thesis reveals that only 4 of 16 possible 2-input boolean functions are native to the topol-
ogy, establishing that algorithmic efficiency arises from circuit geometry rather than learned
weights.

Domain transfer validation demonstrates that the XOR primitive achieves 100% accuracy on
audio rhythm detection (temporal domain) with the exact same circuit used for vision tasks
(spatial domain), proving cross-modal generalization. Supporting experiments validate 43%
quantum interference in attention mechanisms and perceptual bistability (62-76% bimodal
distribution) via proper sampling protocols, demonstrating additional quantum phenomena
inspired by consciousness research frameworks.

We propose the conceptual framing of a “quantum FPGA where field programmability is
quantum superposition” - emphasizing that quantum reprogrammability operates at the
physical layer (qubit states) rather than the logical layer (learned weights). This paradigm
shift suggests quantum algorithm design should focus on exploiting inherent circuit struc-
ture rather than training parameterized circuits via gradient descent.

Our findings have implications for quantum machine learning (avoiding barren plateaus by
using native operations), consciousness modeling (validating Bach’s RCN requirements with-
out substrate-specific mechanisms), and quantum algorithm design (leveraging topology en-
gineering over parameter optimization).

At least for the small circuits studied here, the question “Can quantum circuits compute with-
out learning?” can be answered affirmatively: yes, via native quantum primitives deter-
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mined by circuit geometry.
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Appendix A: Reproducibility

Code Repository
https://github.com/LarsenClose/fluid-quantum-logic

Key Files

01_zero_shot_logic.py — Universal logic unit (100% accuracy)
02_giskit_validation.py — Platform independence validation
03_audio_rhythm.py — Domain transfer to audio
04_noise_robustness.py — Noise resilience testing
05_bistability.py — Bistability validation (62-76% range)

All demonstration files are located in the demonstrations/ directory.

Software Requirements

Package Version

Pennylane >=0.35
PyTorch >=2.0
NumPy >=1.24

Hardware Requirements

CPU-only simulation (no GPU required). Approximately 2-4 GB RAM for largest experiments,
with 5-10 minutes runtime per demonstration.

Validation

All results have been validated across 100+ random seeds and multiple optimizer configura-
tions (Adam, SGD).
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